
Introduction to Python

Etienne Roesch (e.b.roesch@reading.ac.uk)
Original notes by Chris Thomas and Guy Griffiths.

March 2019

1 Introduction

In this series of sessions, you will be learning the basics of how to program using the python
programming language. Programming is an increasingly important skill in sciences in general,
and at least a basic knowledge of programming is essential for meteorology, where the vast
majority of work is performed on computers.

1.1 What is programming?

Programming essentially involves getting a computer to do exactly what you want it to do.
Off-the-shelf programs such as Excel are great at doing certain tasks, but in science often
what we want to do is something which would be very repetitive if we’re using an existing
program. Often there isn’t even a program which can do what we want.

There are many programming languages in existence which try to ease the task of translat-
ing your intentions into something which a computer will obey. The process of programming
involves translating the general concept of what you want to do into a number of small dis-
crete steps, and then translating those steps into the programming language you’re working
in.

In many ways, the first step is the most important. Once you are able to program, learning
a new programming language is often fairly straightforward — the hardest bit is learning to
program in the first place. Although we’re teaching you how to use python, our main aim
is to teach you how to program — that is, how to break down problems into small chunks
which can be processed by a computer.

1.2 What is python?

For this course we’ll be using a programming language called python. Python is used exten-
sively in science (and other fields). Python is a nice language for beginners because it is very
‘high level’ — this means we don’t end up getting bogged down in irrelevant details, and can
focus more on the problem we’re trying to solve. Python is also free, and you can get a copy
for yourself online.

1

e.b.roesch@reading.ac.uk

1.3 How this course is structured

This course will take the form of four practical classes, each of which will include a short
lecture. When the lecture has finished the rest of the class will be spent working your way
through the notes individually and completing exercises. The lecturer and demonstrators will
be on hand to help with any questions or difficulties you may have. All of the helpers are
adept at programming in general and using python in particular, so you can call on them
whenever you need a hand. You should also feel free to discuss problems with your peers and
look up help on the internet — this is how you will program in the real world so it’s good to
get used to it in class!

1.4 What you can expect to know by the end of the course

By the end of this course you will be familiar with:

• How to use python as a powerful interactive calculator

• How to use python to write scripts which can be run

• Using variables to store data values

• Using lists and arrays to store multiple related data values

• How to use loops to perform the same action repeatedly on multiple different data values

• How to use conditional statements to modify the flow of a program

• How to write functions to encapsulate a piece of functionality to re-use

• Importing third party python code to use in your own scripts

• Using the internet to find help on third party python code

• Using the matplotlib module to generate graphs in python

• Reading data from files on disk

• Writing data to files on disk

2 First steps and programming basics

2.1 Running python interactively

There are two ways of using python. You can write a program in a text editor and then run
it. This is called a script. This is the most common way of working, and what you’ll be doing
for all the assignments in this course. You can also use it interactively, typing and running
one line at a time. This is a bit like using a fancy calculator and is a really good way of
experimenting with code before you put it in your script.

2

So let’s try that. Run the Python(x,y) program from the Windows start menu. You should
get a window like the one in Figure 1. From the dropdown menu named ‘Interactive consoles:’

Figure 1: The Python(x,y) start screen. Select ‘Python’ from the ‘Interactive consoles:’ drop-
down box, then click the button indicated with a red arrow.

pick the one just named ‘Python’ and click the button just to the right (indicated with a red
arrow on in Figure 1). A window should appear with some text in it. Exactly what the text
says may vary a little, but it should be something like:

Python 2.7.6 (default , Nov 10 2013, 19:24:18) [MSC v.1500 32 bit (Intel)]

on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

The cursor should start flashing to the right of the >>> symbol. Try using python as a
calculator: type in a calculation (such as 17 + 32) and press enter. The answer will appear
below the line you just typed. If you want to multiply numbers, use the * symbol. For
division, use the / symbol. And to calculate exponents, use ** (e.g. 3**2 is equivalent to 32).
Finally, if you’re not sure which operations will happen in which order, use brackets!

Exercises (answers in section 2.8)

1. Try a few simple calculations. Do they give the answers you expect, or is anything
weird happening (hint: try some simple divisions)?

3

2. Can you find a way to stop these weird things happening?

3. Use the python console to calculate 6403203/2/(12× 13591409).

4. Are you able to do more complex operations (e.g. trigonometry)?

2.1.1 Integer division

You will have noticed that if you divide one integer by another integer, you will always get
an integer result (rounded down). This problem is not unique to python, and is one of the
main stumbling blocks which beginner programming students trip over. The reason for this
behaviour is that when you enter an expression like 3/2, python tries to figure out what you
mean. It sees that 3 is an integer, and that 2 is also an integer. Since you’re only dealing
with integers, it assumes that you want the result as an integer. The way to get around it
is to always write your calculations as decimals (e.g. 3.0/2.0). That way python can detect
that you want the answer as a decimal — it’s not important how many decimal places you
specify, just that it is a decimal. There is also a function named float which converts an
integer to a real number. You can use it like so: float(3) / 2

In real-world programming this can be a source of bugs, but it is rarer than you might
think. Because most real-world problems involve reading data from a file we don’t often end
up writing actual numbers in calculations. Be aware of it, and if you’re using python as a
calculator, always write your numbers as decimals.

2.1.2 Mathematical functions

If you tried to calculate the sine or cosine of a number, you’ll have spotted that it doesn’t
work. And when it fails, it gives a slightly unintelligible error:

>>> sin (1.0)

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

NameError: name 'sin' is not defined

>>>

The reason for this is that mathematical functions are not a core part of python. But
that’s OK! Most things you’ll want to do in python are not a core part of python — they
need to be imported from modules. A module is simply some code which someone has written
which you can use. Importing a module just means telling python that you want to use a
particular bit of someone else’s code.

Common mathematical functions are contained in the math module. To start using the
math module, enter the command import math. Now you can use mathematical functions
like so:

>>> import math

>>> math.sin (1.0)

4

0.8414709848078965

>>> math.cos (1.0)

0.5403023058681398

>>> math.cos(math.pi)

-1.0

>>>

To find out what functions (and mathematical constants, such as π and e) you can use,
enter the command help(math). You can page through the list by pressing the space bar, or
exit the help by pressing ‘q’.

Note that to use the functions in the math module, you will need to write math. before
each function’s name (e.g. math.cos(0.5)).

Exercises Using the math module, calculate the following (hint: use the help(math)

command to find out how):

5. The square root of 10

6. 10! (i.e. 10 factorial)

7. The natural logarithm of e

8. 2
1
2

2.2 Variables

When you’re performing calculations it’s normally desirable to store the results to use some-
time later. In programming languages, this is done through the use of variables. A variable
in programming can be thought of as somewhere to store some information to be referred
to later. Variables have names which consist of alphanumeric characters. In python it is a
very strong convention for variables to consist of all lower-case letters, with underscores to
separate words.

Once defined, variables can be used in place of numbers. Variables are defined and used
as follows (type these examples into your interactive console — they may seem pretty simple,
but typing things in yourself helps fix them in your memory):

>>> a=math.sin (1.0)

>>> b=math.cos (1.0)

>>> a+b

1.381773290676036

>>> a**2+b**2

1.0

>>> result = a**2 + b**2

>>> result

1.0

5

A few things to note:

• Variables are defined by variablename = calculation

• You can put spaces around the equals sign and between the operators

• When you assign a variable in interactive mode, it doesn’t print the result. To print the
result, just type the variable name and press enter

Exercises

9. You’re going to calculate the two roots of the quadratic equation 2x2 − 3x− 2 = 0.
The roots are found by solving:

−b±
√
b2 − 4ac

2a

First set three variables named a, b, and c to the values 2, −3, and −2 respectively.
Reminder: it is good practice to use floats rather than integers.

Now put the three variables into the equation: −b+
√
b2−4ac
2a

.

Then put the variables into the equation: −b−
√
b2−4ac
2a

.

2.3 Lists

One of the most common tasks in programming (particularly scientific programming) is deal-
ing with lists of values. For example, if we wanted to plot a graph of wind speed against time,
we would use a list of times and a corresponding list of wind speeds. The concept of lists is
such a useful one that you would struggle to find a programming language which doesn’t have
them as a central part of the language in one form or another. In python, a list is denoted
using square brackets around some comma separated values. So to define some lists and store
them in variables:

>>> list_a = [0,1,2,3,4,5]

>>> list_b = [5,2,5,2,7,9,2,1,7,9]

>>> this_list_is_empty = []

>>>

We can now use these variable names (list a, list b, this list is empty) to refer to
the entire lists of numbers. If we want to get at a particular element of a list, we use the
variable name followed by square brackets with the number of the element within the list
(called the list index), counting from zero.

For example:

6

>>> list_a [0]

0

>>> list_a [1]

1

>>> list_a [2]

2

>>> list_a [3]

3

>>> list_a [4]

4

>>> list_a [5]

5

>>> list_b [0]

5

>>> list_b [1]

2

>>> list_b [2]

5

>>> list_b [3]

2

>>> this_list_is_empty [0]

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

IndexError: list index out of range

>>> list_a [6]

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

IndexError: list index out of range

>>> list_b [10]

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

IndexError: list index out of range

>>>

If you try to access a list element which doesn’t exist (because the list is not long enough),
you get an error. The important bit of the error is ‘IndexError: list index out of range’ —
this tells you that you have tried to access an element of a list which does not exist.

Exercises

10. Create a list with at least five numbers in it and assign it to a variable named
my list.

11. Access the third element of the list and assign it to another variable named
third element.

12. What do you think will happen if you try to access some elements of your list using
negative indices (e.g. my list[-1])? Try it — is it what you expected? If not, can
you figure out what is happening?

7

13. Access your list using my list[0:3]. What does this do? Play with the numbers
— does it behave as you expect?

14. Remember, anywhere you can use a number, you can also use a variable. Access the
third element of your list using a variable for the index instead of a number.

15. Change the third element of my list to have the value 100 (hint: you don’t have to
type in the whole list again)

You should now be reasonably comfortable with creating lists of numbers and accessing
them one element at a time. We’re going to be using lists a lot throughout this course, so if
you’re uncomfortable with using them play around more. Look at the answers to the exercise
and type them in. Change things. Play with the code. Try and make it give you an error —
then try and understand why it gave you an error.

2.4 Writing scripts using Spyder

So far we’ve used python by typing in commands one line at a time. This is all very well and
good for doing some experimentation, but when we actually want to do some real work it will
be useful if we can gather all of the commands we want into a single script which we can run
as many times as we want.

To write our scripts, we’re going to use a program named ‘Spyder’. Firstly, close the
console you have been using so far. Then using the main Python(x,y) window, start Spyder
— leave the options set as ‘none (IDE)’ and click the button to the right (see Figure 2).

Once Spyder starts up (be patient — it takes a while) it will look something like Figure 3.
Spyder is what’s known as an IDE — an Interactive Development Environment. IDEs are at
heart a fancy text editor for programming with a bunch of other useful tools built in. There
are three areas in the default Spyder layout: the editor on the left where you can type your
programs; the object inspector/variable explorer/file explorer area on the top right; and the
console on the bottom right — this is a python console just like the one you’ve already been
using. The nice thing about this combination is that you can program using the editor, and
then when you need to experiment with some code to see what it does, you have a python
console ready at hand.

Important: there are several versions of Spyder installed on the teaching com-
puters. Make sure your version of Spyder is running python version 2.7, not 3.5.
You can check the version using Help → About Sypder... If the text at the bottom
shows python 3.5, close this version of Spyder and try another one.

Let’s create a simple script and run it. Firstly, create a folder named ‘mt12c’ in your home
directory to store the code for this course. Click File → New file.... This will create a file
called something like untitled.py. Then click File → Save as... and save the file with
the name ‘week1.py’ in the ‘mt12c’ folder.

The new file won’t be completely blank — it should look something like this:

8

Figure 2: The Python(x,y) start screen. The Spyder button is indicated with a red arrow.

Figure 3: The Spyder window immediately after starting it up.

9

-*- coding: utf -8 -*-

"""

Created on Mon Oct 28 11:41:42 2013

@author: Bob

"""

The line beginning with # is a comment, and is ignored when the program is run, and
everything between the lines beginning """ is documentation, which is also ignored when the
program is run. The script therefore doesn’t do anything when it is first created. We’ll talk
more about comments and documentation a bit later on.

So let’s try typing in and running a script. After the documentation string, type in the
following code:

import math

a = 3.0

b = 4.0

c = math.sqrt(a**2 + b**2)

print c

and save the file (Ctrl+s or File → Save). Now run the file by either pressing F5, or by
clicking the button with a green play symbol. You will get a window asking for the run settings
for your file. In the ‘Interpreter’ section, choose the option ‘Execute in a new dedicated Python
interpreter’. Leave everything else on the default value, and click ‘Run’. In the bottom-right
of Spyder, a new tab will appear named ‘week1.py’ (or whatever you named your file). In
that tab, you should see the text ‘5.0’. Hopefully it’s clear what’s happening here, but it’s
worth noting that we’ve introduced something new: the print statement.

2.4.1 The print statement

One key difference between using python interactively and running scripts is that in interactive
mode the result of a calculation is printed to the screen immediately. In script-mode, this
doesn’t happen — generally when we’re running scripts we only want to print output to the
screen at certain key moments. The command in python to do this is print. To use print,
we type print followed by the things we want to print, separated by commas. If we want to
print a literal string of words, we enclose it in quotation marks.

So, since you’ve just learned a little about the print statement, it would be a good idea
to experiment with using it. Remember Spyder has an interactive console ready for just this
sort of thing. Using the interactive console in Spyder try these exercises:

Exercises

16. Create a variable with the name x storing a number (any number!). Now print it.

10

17. Using the print statement, print out ‘The value of x is’ followed by the value of x.

print may not be very complex or difficult to use, but it’s one of the most useful functions
in python you’ll meet.

So we are now able to write scripts which perform a sequence of python commands one
after another. When we run a script, it will have the same effect as:

• Starting an interactive python console

• Typing in all the code in the script one line at a time

• Exiting the interactive python console

This means that if we run a script which has import math at the top and then run another
one which doesn’t, the second script will not be able to access any of the functions in the
math module. This is a good thing — you don’t want a script which only runs correctly if a
different script has been run first!

Writing scripts is the normal way of working in python. In exercise 9 you used python
interactively to find the roots of the equation x2 − 3x − 4 = 0. Let’s put that in a script
instead:

Exercises

18. Create a new python script/module named ‘quadratic roots.py’. Using your answer
from exercise 9, write some code to find the roots of 2x2− 3x− 2 = 0 and print out
both answers to the screen in the form ‘The roots are X and Y’. As before, it is
good practice to use floats rather than integers.

2.4.2 Finding code errors

Spyder has a useful feature: it can spot errors in your code when you are editing a script.
These errors are indicated by symbols in the left-hand margin of the script editor. Moving
the mouse over each symbols pops up an overlay showing the problem. See Figure 4 for an
example.

2.5 Comments

Earlier we mentioned that lines beginning with # are treated as comments and are ignored
by python when a script is run. So what’s the point of them?

Comments are one of the most important parts of programming. The purpose of comments
is to explain what the code does. You will often hear that comments are important so that
other people can easily understand what your code does. This is true, but it’s not the main

11

Figure 4: An example of a coding error (misspelling ‘print’). The error is indicated by a red
diamond in the left-hand margin. Moving the mouse over it reveals the error.

reason to use comments. The main reason to use comments is so that when you need to
change some code which you wrote 6 months ago, you understand it. Comments can go
anywhere in your code - normally an explanatory comment will go just before the code you
are explaining. For example:

import math

Assign values to a and b

a = 3.0

b = 4.0

Use Pythagoras ' theorem

c = math.sqrt(a**2 + b**2)

print c

You don’t need to comment every single line of a program, but you should have enough
comments in a program so that you can see at a glance what’s going on.

Exercises

19. Modify your ‘quadratic roots.py’ script so that it has comments.

2.6 Dictionaries

When you use a dictionary in real life, you look up the word you’re interested in and then
read the definition of that word. You can create a ‘dictionary’ in python which works exactly
like this. Python dictionaries consist of pairs of data. The first element in each pair is called
the key, and the second element is called the value. Going back to our real-world example,
we would say the word is the key, and the definition is the value.

Unlike lists, which are declared with square brackets ([]), dictionaries are declared with
curly brackets ({}). Key–value pairs are declared inside the brackets as key: value and
separated by commas. Let’s take a look at an example:

>>> colours = {1: "red", 2: "orange", 3: "yellow", 4: "green", 5: "blue", \

6: "indigo", 7: "violet"}

12

(If you’re wondering about the \ symbol, this tells python to treat the second line of text as
if it’s a continuation of the first. This is a convenient way to break long lines into two, but
you don’t have to use it.)

The dictionary is called colours, the keys are the numbers 1–7, and the values are the
colours assigned to each key. We can access a particular entry in the dictionary as follows:

>>> print colours [2]

orange

Note that this is not the same as accessing the entries of a list. In this case, 2 is a particular
key in the dictionary, and not the index of that entry. If you try to get the first entry of the
dictionary, as you would do for a list, the following error occurs:

>>> print colours [0]

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

KeyError: 0

In fact, dictionaries are unordered; they don’t have ‘first’ or ‘last’ entries. Dictionaries are
particularly useful to store data when you want to be able to look up a particular value easily,
but you don’t care about the precise order in which the data are stored.

Although in the example given all of the keys are numbers and all of the values are strings,
the keys and values could in fact be either type. In other words, we can define the following
dictionary:

>>> things = {"dog": 3, "cheese": "cheddar", 4: 5}

Try creating a few dictionaries with different types of entry until you’re familiar with how
they work.

It is easy to add and remove elements from a dictionary. To add an element, you can
simply give the dictionary a new key–value pair:

>>> colours [8] = "octarine"

>>> print colours

{1: 'red', 2: 'orange ', 3: 'yellow ', 4: 'green ', 5: 'blue', 6: 'indigo ', 7:

'violet ', 8: 'octarine '}

Elements of a dictionary can be deleted using the built-in del command:

>>> del colours [4]

>>> del colours [7]

>>> print colours

{1: 'red', 2: 'orange ', 3: 'yellow ', 5: 'blue', 6: 'indigo ', 8: 'octarine '}

Existing elements can also be reassigned as follows:

>>> colours [6] = "black"

>>> print colours

{1: 'red', 2: 'orange ', 3: 'yellow ', 5: 'blue', 6: 'black ', 8: 'octarine '}

13

Exercises

20. Create a dictionary called my dictionary which consists of six key–value pairs.
Make the first three pairs be string–number, and the second three number–string.
Try accessing a few of the elements of the dictionary.

21. Delete two entries in the dictionary. Use print to look at the values that remain.

22. Create an empty dictionary and then add an element to it.

2.7 Summary

You should now be familiar with the following things:

• What programming is

• What python is

• How to use python interactively to perform calculations

• How to assign values to variables and use them again later

• How to import the math module to use mathematical functions

• How to store values in a list, and how to access individual elements of the list

• How to start Spyder, write a script and run it

• How to print values of your variables from a script

• How to comment your code

• How to use dictionaries

If you’re having trouble with anything on that list, go through the notes again, ask the
supervisors, ask other students, look it up on the internet, and most importantly of all try
things out. Whatever you need to do to get familiar with these concepts, do it — once you’re
comfortable with the basics of programming, you’ll find the rest of this course goes much
more smoothly.

Once you’re comfortable with the material you’ve covered, log in to blackboard, and
download and complete the first assignment.

Python(x,y) is installed on a number of PCs on campus. If you want to use python on
your own machine, you can download it from http://python-xy.github.io/.

14

http://python-xy.github.io/

2.8 Answers to exercises

Answers

1. You should find that calculations like 3/2 don’t give the right answer - instead they
round down to an integer.

2. One way to stop this happening is to specify the numbers as decimals: e.g. 3.0/2.0

3. You can perform the calculation as follows:

>>> 640320.0**(3.0/2.0) / (12.0 * 13591409.0)

3.1415926535897345

4. Python doesn’t have functions such as sin, cos,
√

built into the language.

5. math.sqrt(10.0)

6. math.factorial(10)

7. math.log(math.e) (Note that math.exp() is a function which allows you to do ex,
whereas math.e is just the constant, e. Also note that math.log() gives the natural
logarithm, unlike on most calculators, which use ln)

8. math.pow(2, 0.5) - you could have used 2**0.5 to get the same result, but that
wouldn’t be using the math module.

9. To find the roots:

>>> a = 2.0

>>> b = -3.0

>>> c = -2.0

>>> (-b + math.sqrt(b**2 - 4.0*a*c))/(2.0*a)

2.0

>>> (-b - math.sqrt(b**2 - 4.0*a*c))/(2.0*a)

-0.5

>>>

10. my list = [7,2,4,9,6] (for example)

11. third element = my list[2]. Remember - list indexing starts at zero, so the third
element is my list[2].

12. Negative indices count from the end of the list. So in the above example:

15

>>> my_list [-1]

6

>>> my_list [-2]

9

>>> my_list [-3]

4

>>> my_list [-4]

2

>>> my_list [-5]

7

>>> my_list [-6]

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

IndexError: list index out of range

>>>

13. This notation creates a sub-list from element number 0 up to (but not including)
element number 3.

14. To access a list element using a variable:

>>> element_index = 2

>>> my_list[element_index]

4

>>>

15. my list[2] = 100. You can change the values of individual elements of a list like
this. To check that it worked:

>>> my_list [2] = 100

>>> my_list

[7, 2, 100, 9, 6]

>>>

16. Using the print statement:

>>> x=1.23

>>> print x

1.23

>>>

17. Printing multiple items:

>>> print 'The value of x is', x

The value of x is 1.23

>>>

16

18. Finding the roots in a script:

import math

a = 2.0

b = -3.0

c = -2.0

root1 = (-b + math.sqrt(b**2 - 4.0*a*c))/(2.0*a)

root2 = (-b - math.sqrt(b**2 - 4.0*a*c))/(2.0*a)

print 'The roots are', root1 , 'and', root2

19. Commented version:

import math

Define our coefficients

a = 2.0

b = -3.0

c = -2.0

Calculate both roots using the quadratic formula

root1 = (-b + math.sqrt(b**2 - 4.0*a*c))/(2.0*a)

root2 = (-b - math.sqrt(b**2 - 4.0*a*c))/(2.0*a)

Print the result to screen

print 'The roots are', root1 , 'and', root2

20. An example of a dictionary is:

>>> my_dictionary = {"a": 1, "b": 2, "c": 3, 4: "d", 5: "e", 6:"f"}

>>> print my_dictionary["a"]

1

>>> print my_dictionary [5]

e

21. To delete two elements of the dictionary:

>>> del my_dictionary [4]

>>> del my_dictionary["c"]

>>> print my_dictionary

{'a': 1, 'b': 2, 5: 'e', 6: 'f'}

22. An empty dictionary can be created as follows:

>>> empty_dictionary = {}

17

To add an entry to it:

>>> empty_dictionary["not so empty"] = "any more"

>>> print empty_dictionary

{'not so empty': 'any more'}

18

3 Looping, branching, and functions

So far we’ve learnt to use python as a calculator and to write simple scripts. To write a script,
we wrote a bunch of python commands one after another, and when we ran scripts, python
went from the top of the script down to the bottom, running each command in order.

This is absolutely fine for very simple cases, but as we start to write more complex pro-
grams we will run into cases where it’s not very efficient. For example:

• We want to do the same thing to each one of a group of different numbers (e.g. find the
square of them all)

• We want to do different things depending on some condition (e.g. find the square root
of a number if it’s positive, but print an error to the screen if it is negative)

• Write some code which we can use with different inputs (e.g. find the roots of a quadratic
equation — we want to give our code the values for a, b, and c and have give back the
roots of the equation)

In these types of case, we need to change the flow of the code, and there are a few ways
to do this when programming. We’re going to investigate them all in this session.

3.1 Loops

A loop in programming can be summarised as doing the following:

• Set up the loop

• Run a series of commands which use some variables to do some calculations

• Change one or more of the variables

• Run the exact same commands with the new values of the variables

• Change one or more of the variables

• Run the exact same commands with the new values of the variables

• Keep repeating until the loop is finished.

3.1.1 Basic for loops

Example 1: Open Spyder, create a new python script, type the following into it (don’t just
copy and paste it) and run it.

values = [0,1,2,3,4,5,6,7,8,9,10]

for i in values:

print i, 'squared is', i**2

Let’s look at what this does in detail:

19

• It creates a list of numbers and stores it in a variable named values

• for i in values: This sets up a loop. What this says is ‘take each of the elements in
the variable values in turn, name it i and run the code below’. Each time the code in
the loop runs, a new variable named i is created with the value of the next element in
the list.

• Take the variable i and print its value and its square (with a bit of text in the middle).

Note that whilst i is a very common variable name to use in a loop, we could have chosen
any valid variable name. Some other (equally good) suggestions could be:

values = [0,1,2,3,4,5,6,7,8,9,10]

for value in values:

print value , 'squared is', value **2

values = [0,1,2,3,4,5,6,7,8,9,10]

for v in values:

print v, 'squared is', v**2

In this example, we’ve only got one line of code inside the loop, but in practice you can
have as many as you want. This type of loop is defined as starting with for and ending when
the indentation stops. For example:

values = [2,4,6,8,10]

for i in values:

print i, 'squared is', i**2

print 'This statement is still in the loop'
print 'So is this - you will see them many times'

print 'The loop has ended , so this will only be printed once'

So that’s all well and good, but what use is it? In general you should use a loop when
you want to do the same thing several times, with only a minor variation. Let’s
look at some more examples

Example 2:

values = [1,3,5,7,9,11,13]

sum_of_values = 0.0

for i in values:

sum_of_values = sum_of_values + i

print 'The sum of the values ', values , 'is', sum_of_values

This is a very common pattern in programming. What we are doing here is

• Setting the variable sum of values to 0.0 (if we set it to 0, we may find we run into
integer division problems (see 2.1.1)).

• Taking each item in the list values in turn and adding it to the sum

20

The line sum of values = sum of values + i may look a little strange at first, because it
has the same variable on both sides of the equation. But not only is that fine, it’s incredibly
common. If you recall, when we looked at variables we said that variables are defined by
variablename = calculation. The calculation on the right-hand side can involve numbers,
functions, and variables. The result of the calculation is then stored in a variable. You can
read the above code as ‘add the value of sum of values, to the value of i, and update
sum of values to this new value’.

Exercises (answers in section 3.6)

1. Write some code which loops over a list of numbers and prints each number, twice
that number, and three times that number to the screen.

2. Write some code to find the mean value of a list of numbers and print it to the
screen. Some things to bear in mind:

• You will need to know the number of items of your list. There is a function
available to calculate this for you — use Google to find it.

• There is also a function which could calculate the sum for you — don’t use
this (the aim of the exercise is to practice loops)

• If it doesn’t work, have another look at section 2.1.1

• Once it works, you should try it with a few different lists of numbers to make
sure that it really works. By storing your list of numbers in a variable, you will
only need to change that variable.

3.1.2 Indexed for loops

If you come into contact with older code, or code written in another language, there is a very
common pattern you will see in for loops. Instead of looping over the elements of a list, we
create a loop over a range of numbers and use those numbers to index the list.

Try typing in and running the following example:

values = [10 ,20 ,30 ,40 ,50 ,60 ,70 ,80 ,90 ,100]

for i in range(len(values)):

val = values[i]

print val , 'squared is', val **2

This is very similar to the first example we saw above and behaves the same way. However,
we’ve got a couple of new things here; built-in python functions named len and range. len

is a function which calculates the length of a list:

>>> values = [10 ,20 ,30 ,40 ,50 ,60 ,70 ,80 ,90 ,100]

>>> len(values)

10

21

You should have discovered the existence of this function when writing code to calculate
the mean value of a list.

Exercises

3. How can you print the final element of a list if you don’t know its length off the top
of your head?

range is a function which generates a list of numbers. In its simplest form, it takes one
argument and generates a list of numbers ranging from 0 up to, but not including, that
argument (this is so that if you use range(5) it creates a list with 5 items, rather than 6):

>>> range (4)

[0, 1, 2, 3]

>>> range (10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> range (20)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

>>> n = 15

>>> range(n)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

>>> range(n-1)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

>>> range(n-2)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

range can also take some optional arguments. If you give it two arguments, it will create a
list of numbers ranging from the first argument up to, but not including, the second argument:

>>> range (5,10)

[5, 6, 7, 8, 9]

>>> range (100 ,110)

[100, 101, 102, 103, 104, 105, 106, 107, 108, 109]

>>> range(-5,6)

[-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]

>>> n=10

>>> range(n-5,n)

[5, 6, 7, 8, 9]

So, in our above example, we are creating a loop where i varies from 0 to 9. i is then
being used to access the elements of the list values. We would also use range() in a loop if
we did not care about using the values, but merely wanted to do something a certain number
of times. For example:

for i in range (10):

print 'All work and no play makes Jack a dull boy'

22

Exercises

4. Rewrite exercise 1 using an indexed for loop.

5. Write an indexed for loop to calculate the sum of all of the numbers in a list

6. This pattern is very common when you want to loop over almost all of a loop. By
adjusting the arguments to the range function, you can pick which parts of the list
to include. Bearing this in mind, write some code to calculate the sum of all of the
numbers in a list apart from the final one.

7. Write some code to calculate the sum of all of the numbers in a list apart from the
first and final elements.

3.1.3 A worked example: the Fibonacci sequence

We are now going to look at an example of code which uses a loop to calculate the first n
Fibonacci numbers and print them to the screen. This will break down the stages we need to
write an algorithm, and will introduce the idea of using temporary variables which get reused
over and over.

When solving a problem using programming, there are two main stages: breaking the
problem down into small steps which a computer can solve, and converting these small steps
into the programming language you’re using. The first step should be done on paper — you
should never just start coding until you’ve got a clear idea of what you’re going to do.

The Fibonacci sequence is defined as follows:

• The first two Fibonacci numbers are both 1

• A Fibonacci number is the sum of the previous two Fibonacci numbers

To calculate the Fibonacci sequence we have the following basic steps to the algorithm:

• Start with the first two numbers (f1 and f2), stored in variables

• Add the two numbers together to get the next Fibonacci sequence

• Print the the result to the screen

• Update the two variables so that we’re storing f2 and f3

• Add the two numbers together to get the next Fibonacci sequence

• Print the the result to the screen

• Update the two variables so that we’re storing f3 and f4

• Add the two numbers together to get the next Fibonacci sequence

23

• Print the the result to the screen

• Update the two variables so that we’re storing f4 and f5

• Keep going until we’ve printed n Fibonacci numbers to the screen

This looks very similar to the pattern we saw at the very beginning of section 3.1. We
are doing the same thing over and over with just a minor change. Let’s break this down into
programming tasks, one of which will be using a loop:

• Start by setting up two variables to store the previous two Fibonacci numbers. I’ll call
these f previous and f 2previous to emphasize the fact that they are the 2 previous
Fibonacci numbers (i.e. the current Fibonacci number is the one we’re calculating)

• Set up another variable n which stores how many Fibonacci numbers we want to calcu-
late.

• Set up a loop to go from 1 to n (The range function will be useful here)

• In the loop:

– Add the two numbers together and store in a variable f current

– Print the result to the screen

– We now want to overwrite the oldest Fibonacci number (i.e. f 2previous) with
the next oldest one (f previous)

– We also want to overwrite f previous with our current number, f current.

– Now when we go back to the start of the loop, our variables f previous and
f 2previous will contain the correct values for calculating the next Fibonacci
number

Now that we have a basic outline for our program, we can start to code. We’re going to
create this code in a script in Spyder. When writing code, it is usually helpful to write the
basic structure first, perhaps with a few initial variables defined, and comments to say what
you’re going to do where. Then when you’re happy with the structure, write the actual code
under the comments. My first pass at the Fibonacci program looks like this:

Set up f_2previous and f_previous

f_2previous = 1

f_previous = 1

Print the first 2 Fibonacci numbers to the screen

print f_2previous

print f_previous

Define how many Fibonacci numbers to calculate

n = 20

Loop from 1 to n

24

for i in range(n):

Add the numbers together and store in f_current

Print to the screen

Now update the old values , ready to loop again

Copy the value of f_previous to f_2previous

Copy the value of f_current to f_previous

End of loop , nothing more to do

Now filling in the details:

Set up f_2previous and f_previous

f_2previous = 1

f_previous = 1

Print the first 2 Fibonacci numbers to the screen

print f_2previous

print f_previous

Define how many Fibonacci numbers to calculate

n = 20

Loop from 1 to n

for i in range(n):

Add the numbers together and store in f_current

f_current = f_previous + f_2previous

Print to the screen

print f_current

Now update the old values , ready to loop again

Copy the value of f_previous to f_2previous

f_2previous = f_previous

Copy the value of f_current to f_previous

f_previous = f_current

Although it seems like a lot of work at first, you should always follow a similar procedure
to this when programming. Most of the work is done before you actually start coding.
To summarise the steps you should be taking:

• Write down the steps of the problem

• Break down the problem whilst thinking about the tools you have available (i.e. loops,
variables, etc)

• Once you’re happy that the method is broken down into the basic steps, write the
structure of code in your code editor (for python this is going to be Spyder), with
comments explaining what you’re doing

25

• Review your code and once you’re sure it matches the method you wrote down, fill in
the details of the code.

Exercises

8. A Fibonacci number can be defined as fn = fn−1 + fn−2, with f1 = 1 and f2 = 1.
We’re going to define a new type of number called a Super-Fibonacci number, sn, as
sn = sn−1 + sn−2 + sn−3, , with s1 = 1, s2 = 2, and s3 = 3. Using the same process
as outlined above, write code to print out the next 10 Super-Fibonacci numbers.

3.2 Conditionals and Branching

The next way to change the flow of your code is by branching. Essentially this means running
different bits of code under different conditions. For example, calculating the square root of
a number if it is positive, and printing an error message if it is negative. To do this, we need
to introduce a couple of things:

• A way to represent the concepts ‘this thing is true’ and ‘this thing is false’

• A way to test things to see whether they are true or false.

In python we have two special values, True and False. These are called boolean values.
You can assign these values to variables, and you can generate them using comparison oper-
ators. In python, the following comparison operators are available:

Operator Description
< less than
> greater than
== equal
!= not equal
<= less than or equal
>= greater than or equal

Notice that the operator for comparing if two values are equal is ==. This is
to distinguish it from the single equals sign used to assign values to variables.

You can use these operators to check whether a comparison is True or False. For example:

>>> 1 > 4

False

>>> 5 >= 5

True

>>> 1 == 1

True

>>> 1 == 2

False

26

>>> 1 != 1

False

>>> 1 != 2

True

>>> a = 3

>>> b = 7

>>> a > b

False

>>> a < b

True

>>> a == b

False

>>> a != b

True

You can also check for multiple conditions using the operators:

Operator Description
and true if both operands are true
or true if one operand is true
not true if the operand is false

For example:

>>> 4 > 5 or 7 < 10

True

>>> 4 > 5 and 7 < 10

False

>>> not 4 > 5

True

>>> not 4 < 5

False

>>> a = 10

>>> b = 20

>>> a == 5 or a == 10

True

>>> a == 10 and b == 10

False

>>> a == 10 and b == 20

True

To reiterate, ==, not =, must be used to test equality. If you accidentally write

>>> a == 10 and b = 20

you will find that python returns an error message:

Traceback (most recent call last):

File "<stdin >", line 1

SyntaxError: can't assign to operator

27

3.2.1 The if statement

So, we can now use these tests to change the flow of the code, using the if statement. Type
the following example into a script and run it:

numbers = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]

for i in numbers:

if i < 0:

print i, 'is a negative number '

The if statement starts with the keyword if followed by a condition, then a colon. It
forms the start of an indented block, and all of the code in the block will run if the condition
is true.

Exercises

9. Modify the code above so that:

• The range function is used to generate the list of numbers. Make it vary from
−10 up to 10

• Instead of printing negative numbers, the code only prints out numbers which
are non-negative.

3.2.2 else and elif

Very often you will need to do something if a condition is True and something else if it is
False. This is done by using the else statement:

if condition :

do something

else:

do something different

If the first condition is met, the first block of code will be run. If the first condition is not
met, then the second block of code will be run. (Please note that in real code, the italic text
will be replaced with python commands.)

Exercises

10. Modify the last bit of code above so that if prints one string if a number is negative,
and a different string if it is non-negative (e.g. ‘-10 is a negative number’ and ‘5
is a non-negative number’)

28

Although it’s less common, you can also check if several conditions are true, and run a
different bit of code when each is true. This uses the elif statement, which is short for ‘else
if’:

if condition :

action

elif other condition :

other action

elif yet another condition :

yet another action

...

...

else:

still another action

Exercises

11. Modify the last bit of code above so that if prints one string if a number is negative,
a different string if it is non-negative, and yet another string if the number is zero.

12. In python, how can you check if a number is even? And how can you check if it is a
multiple of 3? (Hint: You may not already know this. But you’re sat at a computer
with access to the internet...)

13. Write some code which creates a list of numbers from 0 to 99, and checks two things:

• Whether it is an even number. If so print ‘〈number〉 is even’ (where 〈number〉
is the number...)

• Whether it is a multiple of 3. If so print ‘〈number〉 is a multiple of 3’

14. Repeat the previous question with the following difference:

• If the number is even, print ‘〈number〉 is even’ (same as before)

• If the number is not even, but it is a multiple of 3, print ‘〈number〉 is an odd

multiple of 3’

3.3 Functions

We’ve already used several functions in python. For example:

• math.sin: we gave it a number (e.g. math.sin(1.23)) and it gave us back the sine of
that number.

• math.cos: we gave it a number (e.g. math.cos(1.23)) and it gave us back the cosine
of that number.

29

• math.factorial: we gave it a number (e.g. math.factorial(20)) and it gave us back
the factorial of that number.

• range: we gave it a number, or several numbers (e.g. range(10), range(5,10)) and it
gave us back a list of a range of numbers.

• len: we gave it a list (e.g. len([1,2,3,4,5])) and it gave us back the length of that
list.

A function is a piece of code which you can give values to (called arguments) and which
will return a value back to you. We define functions with the keyword def — this starts a
new indented block which defines the function. For example:

def double_number(i):

return 2 * i

This code creates a function which, when used, will double a number. Using functions you
have written works exactly the same way as using built-in or imported functions: write its
name where is appropriate in your code and give it the arguments it requires.

Defines the function

def double_number(i):

return 2 * i

Uses the function

print double_number (10)

Uses the function by passing it variables

a = 15

b = double_number(a)

print b

You can only use a function after it has been defined. The following code will not work:

Uses a function that has not been defined yet!

print double_number (3)

Defines the function

def double_number(i):

return 2 * i

It you try to run this code python will return the following error message:

NameError: name 'double_number ' is not defined

Let’s go through how to define a function in more depth. The basic template to follow is:

def function name (arguments):

action

another action

...

return value

30

Breaking this down into its various components:

• The keyword def, to start the function.

• The name of the function: this should preferably be all lower case with underscores used
to separate words.

• Brackets containing the arguments to the function, followed by a colon. When you
use the function, you will give it values (or variables containing values) in place of the
arguments inside the brackets. The values are then stored in a variable with the name
given inside the brackets. If your function does not require any arguments, give it a pair
of empty brackets: ().

• An indented block containing the code which makes up the function. This will always
use the arguments supplied to the function (if it doesn’t, they don’t need to be there!).

• A return statement. This will end the running of the function as soon as it is
reached, and give back the value which follows return.

The variables defined in the argument list are only available within your function block.
In the example above, the variable i is only available inside the indented function definition.
If you try and use it elsewhere you will get an error.

Exercises

15. Write a function called square it which takes an argument and returns its square.
Also write some code to use the function to print the squares of 5, 10, and 100.

16. What will the following code do?

def func(sequence):

for i in sequence:

return 2 * i

a = func ([1,2,3,4,5])

print a

(a) Print [2,4,6,8,10] to the screen

(b) Print 2 to the screen

(c) Print 10 to the screen

(d) Print [2,2,3,4,5] to the screen

(e) Print [1,2,3,4,10] to the screen

17. Write a function to calculate n Fibonacci numbers, and return them all as a list.
This exercise is a little bit more involved than previous ones. When doing it, bear
in mind the following:

31

• Your function will need to take one argument, n

• Where previously you have just printed the numbers to screen, now you will
need to store them in a list. To do this you should create an empty list before
the loop, (e.g. fib list = []) and then add items to it using the append

method. You may need to search for help on how to use this.

• When you’ve stored n numbers in your list, you need to return it.

Once you have written the function, use it with n = 10.

3.4 The while statement

Another way of looping over some items is to use the while statement. Unlike for, which
loops over a pre-specified number of elements, while keeps on looping until a particular
condition is met. You can use while as follows:

while test :

action

As long as test is True, action will be performed. As soon as test is False the loop will
finish.

For an example of when this is useful, consider a function that takes a number (n) and
multiplies it by 2 until it is larger than 1000. It would be difficult to use a for loop to do
this because you don’t know how many multiplications are required; for example, if the input
number is 3, nine multiplications are needed, but if the input number is 501, only one is
needed. The function can be written as follows:

def double_until_1000(n):

while n < 1000:

n = n * 2

return n

Let’s say we have double until 1000(3) somewhere in our program. Consider the first
iteration of the while loop. At this point n is equal to 3, and since 3 < 1000, the multiplication
by 2 is executed. n is now 6, which is also less than 1000, etc., etc. Eventually, however, n
is larger than 1000 and no more multiplications occur. At that point n is returned by the
function. This value can then be printed to the screen or used in other parts of the code.

Exercises

18. Modify the above code to return the number of multiplications required to make n

larger than 1000. Call the function and print out the number it returns. (Hint: you
will need to use another variable inside the function.)

32

19. How can you make the function return both the final value of n, and the number of
multiplications required? Print both of these values.

20. If you pass the function a negative number, or zero, it will never stop running and
you will have to terminate it manually. How can you protect against this happening?

3.5 Summary

In this section we have covered loops, conditionals, branching, and functions. Together with
the different types of variables we covered in section 2 these make up the building blocks of
programming, no matter what programming language you learn.

It’s very important that you understand these concepts, since they will underpin every
program you write. Make sure that you have understood all of the exercises, and try them
again if you had any difficulties (take a day off first though — often these ideas sink in slowly
and coming back to them after a bit of a rest can work wonders).

The next section will focus on using other people’s code, and creating graphs in python,
and will contain exercises which reinforce the use of loops, branching, and functions.

3.6 Answers to exercises

Answers

1.
numbers = [1,5,9,28,101,10]

for num in numbers:

print num , 2*num , 3*num

2.
numbers = [10,9,8,1,2,3]

sum = 0.0

for num in numbers:

sum = sum + num

We could have used float(sum) here if we had set it to 0 instead

of 0.0

print sum / len(numbers)

3. This is where len is useful. It can be used to find the length of a list, which can
then be used to access the final element of that list. Note that because indices start
at 0, we need to subtract 1 from the length, as follows:

33

print my_list[len(my_list) - 1]

This won’t work if the list is empty!
4.

numbers = [1,5,9,28,101,10]

for i in range(len(numbers)):

num = numbers[i]

print num , 2*num , 3*num

5.
numbers = [10,9,8,1,2,3]

sum = 0.0

for i in range(len(numbers)):

sum = sum + numbers[i]

print sum

6.
numbers = [10,9,8,1,2,3]

sum = 0.0

for i in range(len(numbers) -1):

sum = sum + numbers[i]

print sum

7.
numbers = [10,9,8,1,2,3]

sum = 0.0

for i in range(1, len(numbers) -1):

sum = sum + numbers[i]

print sum

8.
Set up s_3previous , s_2previous and s_previous

s_3previous = 1

s_2previous = 2

s_previous = 3

Define how many Super -Fibonacci numbers to calculate

n = 10

Loop from 1 to n

for i in range(n):

Add the numbers together and store in s_current

s_current = s_previous + s_2previous + s_3previous

34

Print to the screen

print s_current

Now update the old values , ready to loop again

Copy the value of s_2previous to s_3previous

s_3previous = s_2previous

Copy the value of s_previous to s_2previous

s_2previous = s_previous

Copy the value of s_current to s_previous

s_previous = s_current

9.
numbers = range(-10, 11)

for i in numbers:

if i >= 0:

print i, 'is a non -negative number '

10.
numbers = range(-10, 11)

for i in numbers:

if i >= 0:

print i, 'is a non -negative number '
else:

print i, 'is a negative number '

11.
numbers = range(-10, 11)

for i in numbers:

if i > 0:

print i, 'is a positive number '
elif i < 0:

print i, 'is a negative number '
else:

print i, 'is zero'

12. You can use the modulo operator (%). This give the remainder of division between
two numbers. So if the remainder of dividing a number by 2 is zero, it is even. If
the remainder of dividing a number by 3 is zero, it is divisible by 3:

n % 2 == 0

n % 3 == 0

35

13.
numbers = range (100)

for num in numbers:

if num % 2 == 0:

print num , 'is even'
if num % 3 == 0:

print num , 'is a multiple of 3'

14.
for num in numbers:

if num % 2 == 0:

print num , 'is even'
elif num % 3 == 0:

print num , 'is an odd multiple of 3'

15.
def square_it(n):

return n * n

#Use the function with a variety of inputs

print square_it (5)

print square_it (10)

print square_it (100)

16. (b) Print 2 to the screen. The first time the code goes through the loop, i will have
the value 1. The function will get to the line return 2*i (i.e. 2) and the function
will finish running, returning the value 2.

17.
def fibonacci(n):

fib_numbers = []

f_previous = 1

f_2_previous = 1

We'll add the first two Fibonacci numbers to the list first

fib_numbers.append(f_2previous)

fib_numbers.append(f_previous)

for i in range(n):

Calculate the current Fibonacci number

f_current = f_previous + f_2previous

Add it to the list

fib_numbers.append(f_current)

Update the values of f_previous and f_2previous

f_2previous = f_previous

f_previous = f_current

return fib_numbers

#Use the function with n = 10

36

fibonacci (10)

18. You can define a variable called count to determine how many multiplications were
required:

def double_until_1000(n):

count = 0

while n < 1000:

n = n * 2

count = count + 1

return count

#Use the function

print double_until_1000 (3)

19. The return statement can be used to pass back multiple values at once:

def double_until_1000(n):

count = 0

while n < 1000:

n = n * 2

count = count + 1

return n, count

#Use the function

print double_until_1000 (3)

20. To protect against zero or negative numbers, you can add another condition to the
while statement as follows:

def double_until_1000(n):

count = 0

#Only proceed if n is positive

while n > 0 and n < 1000:

n = n * 2

count = count + 1

return n, count

If n is negative or zero, the while statement will not activate. In that case, the
return statement will pass back the original n and the initial value of count, which
is zero.

Alternatively, an if statement could be used:

def double_until_1000(n):

count = 0

#Only proceed if n is positive

if n > 0:

37

while n < 1000:

n = n * 2

count = count + 1

return n, count

38

4 Using external modules and basic plotting

In section 3 we came across a few of python’s built-in functions (e.g. len and range). Checking
on the website there are around 75 of them. That’s quite a few, and they’re certainly useful,
but there aren’t enough to cover the many things a programmer might want to do. As we’ve
already seen in section 2, there aren’t even sin and cos functions. So if there’s something
we’d like to do that doesn’t have a built-in function, we either need to write it ourselves
(which is hard work and less preferable) or use some code from a module.

We’ve already touched on using modules in section 2 when we used the math module to
do some mathematical calculations for us. We imported the math module and then we used
the functions in it. The key stages of using modules are:

• Wanting some functionality from our code

• Thinking “Someone must have programmed this already”

• Finding the module name which contains the code which someone else wrote

• Importing the module so that it’s available in our code

• Reading the help about how to use the functions we want

• Using the functions in our code

4.1 Finding the module you need

Shortly we’re going to learn about basic plotting in python. To do this, we’re going to need
a plotting module of some sort.

Exercises (answers in section 4.9)

1. Without reading ahead in the notes (but using any other method you like), find a
plotting module to use.

Finding the correct module to use is an important skill in programming. In many cases
it’s an easy task; python has the philosophy “There should be one — and preferably only one
— obvious way to do it”, and a quick Google search will tell you what you need to know.
However, sometimes there may be more than one good option and you’ll need to read up on
a few different modules to see which one is best for your needs.

4.2 Importing a module

To import a module in python, it must first be installed on your system. The good news is that
python already comes with a very large number of modules available. The other good news is

39

http://docs.python.org/2/library/functions.html

that installing new python modules is pretty easy, particularly when you’re using Python(x,y).
Even better, all the modules we’re going to use in this course are already available on the lab
machines, so you don’t need to worry about this part at all for the moment.

Once a module is present on your system, you can make it available to use in the following
way:

import math

import datetime

import random

This code makes 3 modules available in our code from that point on: math, datetime, and
random. You can put import statements wherever you like in your script, but it’s normal to
put them all together at the top of the script. You should stick to that convention until you
have a good reason not to. During this course you are very unlikely to have a good reason
not to do this — we expect to see all import statements at the top of your scripts.

4.3 Finding functions within a module

Once you’ve imported the module you want, it’s often useful to see the details of the functions
it holds, and how to use them. There are a few different ways to do this. I’d recommend one
of these:

• Using an interactive python console, type help(modulename). You must have imported
the module first.

• Search on the internet. Something like ‘python modulename documentation’ or ‘python
modulename api’ will almost always find you what you want (API stands for Application
Programming Interface, and is the acronym often used for this type of documentation).

Both methods will end up giving you the same information, including a list of all of the
functions in the module, and how to use them (i.e. how many arguments they take, and what
each one means).

Exercises

2. Using an interactive console, import the math module and use the help function
to find out the functions it contains. Find two methods of calculating the base 10
logarithm of a number. (Note that square brackets around a function argument
indicate that it is optional.)

4.4 Using functions within a module

As you may remember from section 2.1.2, to use the functions in a module, you must prefix
them with the module name followed by a dot. For example, in the math module:

40

import math

x = 3.14

y = math.sin(x)

z = math.cos(x)

The functions we have looked at so far all have one argument inside the brackets. A
function can take any number of arguments (including zero). The arguments are comma-
separated quantities which the function needs to perform the calculation. The arguments
can be either literal values (such as numbers, True/False, or strings) or variables which have
been defined elsewhere. If you give the function a variable, the name of that variable doesn’t
matter; it’s the value of the variable that is important. So all of the below lines are valid (and
give the same answer):

import math

x = 3.14

a_long_variable_name = 3.14

this_var_is_nearly_pi = 3.14

print math.sin(x)

print math.sin(a_long_variable_name)

print math.sin(this_var_is_nearly_pi)

print math.sin (3.14)

If you give the wrong number of arguments to a function, it will complain when you try
and run it:

>>> math.sin(1,2)

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

TypeError: sin() takes exactly one argument (2 given)

>>>

The error message you get here is a clear one: the function math.sin() was expecting one
argument, but you gave it two.

In the last exercise, we touched on the math.log() function. This is a function which has
an optional argument. If you look at the documentation (you can do this in an interactive
console by typing help(math.log) or just help(math) and scrolling down), you’ll see that it
specifies the arguments as:

log(x[, base])

Here, square brackets indicate an optional argument. The documentation should specify
what happens in cases where the optional arguments are present and when they are not.
Indeed:

log(x[, base])

Return the logarithm of x to the given base.

41

If the base not specified , returns the natural logarithm (base e) of x.

4.5 Importing a module, revisited

Now we have covered the simple cases of importing and using a module we will look at other
useful ways of importing and using a module. They all perform the same task — making
other people’s code available for us to use — but they have some advantages over the method
we’ve seen already.

4.5.1 Giving a module a shorter name

Soon we will be looking at plotting and we’re going to use the matplotlib module. But
one thing we haven’t mentioned yet is this: as well as functions, modules can contain other
modules. For example, matplotlib has a sub-module named pyplot. We can import and
use this submodule as follows:

import matplotlib.pyplot

Now when we want to use the functions in this module, we just have to find their names,
and add matplotlib.pyplot. to the front of each one. If we’re writing a script to generate
a lot of plots, that might add up to a lot of typing. Perhaps you really enjoy repetitive tasks,
but the idea of typing out matplotlib.pyplot 50 times doesn’t fill me with joy. It would be
nice if we could just refer to matplotlib.pyplot by a shorter name that we choose. And by
a happy coincidence, that’s exactly what we can do:

import matplotlib.pyplot as plt

Now, instead of typing things like matplotlib.pyplot.plot(x,y), we can simply type
plt.plot(x,y). Much more concise! And it works with any import statement. Taking an
example from earlier:

import math as m

x = 3.14

a_long_variable_name = 3.14

this_var_is_nearly_pi = 3.14

print m.sin(x)

print m.sin(a_long_variable_name)

print m.sin(this_var_is_nearly_pi)

print m.sin (3.14)

4.5.2 Importing some functions from a module

Let’s say we’re going to write a script which does a lot of trigonometrical operations. You
want to use the sin and cos functions from the math module, but nothing else. Having paid

42

diligent attention to the previous bit, you’re planning on renaming math to m to save on some
typing. But wait! There’s an even better trick you can pull.

Once you know which functions you want to use from a module, you can import them
individually. If you just want to use sin, you can import it thus:

from math import sin

x = 3.14

a_long_variable_name = 3.14

this_var_is_nearly_pi = 3.14

print sin(x)

print sin(a_long_variable_name)

print sin(this_var_is_nearly_pi)

print sin (3.14)

The pattern to do this is from modulename import function name. You can import
multiple functions at the same time by separating them with commas:

from math import sin , cos

x = 3.14

print sin(x)

print cos(x)

You should use this method when a module contains a few functions which you need to
use a lot. Normally you should just import the module and name it something short. This
helps make it clear to someone reading the code (which may well be yourself in 6 months’
time!) which bits of the code are coming from where. Of course, they should already know
that from the comments (hint, hint...).

4.5.3 I’m telling you this so that you know never to do it

What I’m about to tell you is a bad idea. It may not seem like a very bad idea, and it saves
you typing, but it is. If you get into the habit of it, people won’t like to read your code, and
it may just cause a problem which is really annoying to try and debug.

You should know about this so that if you see it in someone else’s code, you’ll know what
it does. If you use it in your own scripts during this course, you will get marked down for it.

from math import *

print sin(pi)

print cos(pi)

print tan(pi)

print abs(pi)

print pow(pi, 2)

43

What’s happened here is that everything (* commonly means ‘everything’ in program-
ming/computing) in the math module has been imported with its own name. Great, right?
Less typing, and no need for math. in front of everything! So what’s the problem?

The problem is that in reality, scripts can contain many variables, many functions, and
many imported modules. Some of these things may have the same names. Normally that’s
fine, because you know which module each function is from. When you use from modulename

import * it’s not easy to see which functions have come from where, and it’s not even
necessarily obvious which function you’re using. Unless you know exactly what is in each
module, it’s a risky thing to be doing.

For example, if we have 2 modules, named module1 and module2, each of which contains
a function named useful func, what does the following code do?

from module1 import *

from module2 import *

useful_func ()

1. It runs useful func() from module1.

2. It runs useful func() from module2.

3. It doesn’t matter, because I promise I won’t ever do that.

The correct answer is 3 (however, if you see it in someone else’s code, the correct answer
is 2).

4.5.4 Modules don’t just have to contain functions

As well as functions, modules can contain other things. We’ve come across modules which
can contain other modules, but a module can also contain variables, and classes. Classes are
beyond the scope of this course, and you already know about variables. In fact, we’ve already
had an example using a module with a variable in.

Exercises

3. What was the module which contained a variable? What was the variable?

4. Is importing a variable from a module different to importing a function?

4.6 The matplotlib plotting module

matplotlib is a plotting library for python (the term ‘library’ is used to refer either to individ-
ual modules or collections of modules). It is capable of generating almost any sort of 2D plot
you can think of. There is a gallery of plots online (http://matplotlib.org/gallery.html),

44

http://matplotlib.org/gallery.html

each of which comes with the python code you need to generate it. If you ever have an unusual
type of plot to generate, the quickest thing to do is usually to go the gallery, find a similar
example, and copy then modify the code.

Exercises

5. Go to the matplotlib gallery, choose a plot you like, copy the code into Spyder
and run it, so that you generate the plot yourself. See how much of the code you
understand.

6. Modify your code so that something is different (it doesn’t matter what).

7. Look at some other examples in the gallery. What two lines do they all have in
common?

4.6.1 Basic 2D plots

In the last set of exercises you copied and pasted some code and ran it. You may not have
understood what every single line did, but you should have been able to tell roughly what
each section of the code did (from the comments and the function names). And that’s before
we’ve actually learned anything about matplotlib!

You should also have found that each example contained two things: the import statement
at the start, and plt.show() at the end. All of the examples used the same import statement:
import matplotlib.pyplot as plt. This is a very common convention when dealing with
matplotlib, and we’re going to stick to it. That way, when other people read your code,
it should be immediately obvious to them that you’re using matplotlib, even if they have
skimmed over the import statement. As for plt.show(), it will come as no real surprise that
this shows the plots you’ve drawn. This comes at the end of your script, and once plt.show()
has been called, you will get an interactive pop-up window where you can zoom in and out,
pan around, and save your figure.

So in between these two statements is where the actual plotting work goes. To start
with, we’re going to generate simple 2D plots of y against x. The function we’re going to
use is plt.plot(). In its simplest form, plt.plot() takes two lists of the same length as
arguments, uses the values as the x and y values, and generates a plot of y vs x with the
points joined by a blue line.

Exercises

8. Create lists named x and y, each of which contains five numbers, and then call the
plot function using x and y as arguments. Finally, display the plot on the screen.

All well and good, but perhaps we don’t want to plot a solid line — maybe we want to
see exactly where the points we’ve plotted are. plt.plot() takes an optional third argument

45

which specifies what style to plot in. This is a string (so it goes between inverted commas)
and it consists of two possible parts: a letter representing the colour, one or two characters
representing the line style, and another character representing the point style. It doesn’t
matter which order you put these things in, and you don’t have to specify all of them. For
example, to plot a red ('r') dashed line ('--') with circular markers ('o'), the style string
is: 'r--o' (although you could also use 'ro--', '--or', '--ro', 'o--r', 'or--' since they
are all equivalent).

Exercises

9. What are the style strings for the following styles:

• Black dots for the points, no line

• Green triangles pointing to right joined by a solid line

• Yellow pentagons for the points, joined by a dash-dot line

• Magenta stars for the points, joined by a dotted line

10. Modify your script from the previous exercise so that the line is plotted in a style of
your choice.

As soon as you call plt.plot in a program, a new figure is created and a line plotted
on it. After that, every call to plt.plot will result in a new line being added to the same
figure. If you want a to create two separate plots in the same program, you need the command
plt.figure(), which creates a new figure. The procedure is then (for example):

• Use plt.plot() to create a plot

• Use plt.plot() to add lines to the same plot

• Use plt.figure() to create a second plot

• Use plt.plot() to add lines to the second plot

• Use plt.figure() to create a third plot

• Use plt.plot() to add lines to the third plot

• Continue until you have all of the graphs you want

• Use plt.show() to display all of the graphs

46

4.6.2 Aside: more on python help

When you got help on the plt.plot function in previous exercises, you should have seen
something like this:

plot(*args , ** kwargs)

Plot lines and/or markers to the

:class:`~ matplotlib.axes.Axes `. *args* is a variable length

argument , allowing for multiple *x*, *y* pairs with an

optional format string. For example , each of the following is

legal ::

plot(x, y) # plot x and y using default line style and

color

plot(x, y, 'bo') # plot x and y using blue circle markers

plot(y) # plot y using x as index array 0..N-1

plot(y, 'r+') # ditto , but with red plusses

If *x* and/or *y* is 2-dimensional , then the corresponding columns

will be plotted.

An arbitrary number of *x*, *y*, *fmt* groups can be

specified , as in::

a.plot(x1, y1, 'g^', x2 , y2 , 'g-')

Return value is a list of lines that were added.

What does plot(*args, **kwargs) mean? The *args bit means that this function can
take different numbers of arguments. That makes sense, since we’ve seen that we can use
plt.plot() in two ways: with a style string and without one (which require three and two
arguments respectively). The **kwargs bit means that we can also have named, or keyword
(‘kw’) arguments as well. If you look a bit further down the documentation, you’ll see the
following examples:

plot([1,2,3], [1,2,3], 'go-', label='line 1', linewidth =2)

plot([1,2,3], [1,4,9], 'rs', label='line 2')

In these examples, label and linewidth are the named arguments. In python, all of the
named arguments must be given to the function after the other arguments. label is a useful
one, since it allows us to give each line a label, which can be used in a legend. That can be
very useful! Let’s look at that in a bit more detail.

4.6.3 Labelling your plot

Exercises

11. Modify your script so that it now plots two different lines on the same graph, and
give them each a label. Did the plot you produced look as expected?

47

12. Make the plot appear in the way you expect.

Having completed the above exercise, you’ve found out how to label plots and generate a
legend. There are two other essential parts of generating a plot: labelling the axes, and
giving it a title. matplotlib makes this very simple. The commands are:

• plt.title('The title of your plot')

• plt.xlabel('The title of the x-axis')

• plt.ylabel('The title of the y-axis')

Exercises

13. Finally add a title and some axis labels to your plot. Now save it to disk.

4.7 3D plots

So far we’ve seen how to plot one variable (y) against another (x) using the plot function.
What about if we want to plot the value of a third variable, z, against both x and y? We
might want to do this if we have values of temperature at a set of locations and want to
see where’s hottest and where’s coldest. In this case it would be good if different values
of z were represented by different colours. In this section we’ll look at two ways to make
3D plots: plt.scatter and plt.imshow. As you can see they are both contained in the
matplotlib.pyplot library, which has been imported with the name plt.

4.7.1 Plotting with scatter

Firstly we’ll use the plt.scatter function to plot a set of temperatures at different locations.
Try this:

import matplotlib.pyplot as plt

x = [1,2,3,4,5]

y = [4,1,10,2,3]

T = [50 ,40 ,30 ,20 ,10]

plt.scatter(x, y, c = T, s = 200, cmap = 'coolwarm ')
plt.show()

There are a few things going on here. Firstly, temperature is represented by the T variable
and has values between 10 and 50◦C. The values of x and y represent coordinates at which
the temperatures were measured. Finally, instead of the plt.plot function, plt.scatter
has been used. This works similarly to plot but takes some new arguments:

• c = T uses the values of T as the colour,

48

• s = 200 makes the markers bigger than they are initially,

• cmap = 'coolwarm' uses a particular colour map, which in this case goes between blue
(low values) and red (high values).

Exercises

14. Find an online list of colour maps and try a few different ones in the code above.

15. Using plt.scatter, plot the longitude (x), latitude (y) and average July tempera-
ture (T) for four cities of your choice.

16. Draw the same plot but this time make the marker sizes proportional to the city
populations. Choose the marker sizes sensibly; I recommend using multiples of
10000.

4.7.2 Plotting with imshow

Sometimes you may need to plot a regularly-spaced grid of values stored in a 2D array. This
could, for example, be a 1◦ × 1◦ map of surface air temperatures across the globe. You could
use plt.scatter for this, but it would be more convenient to be able to pass the array
directly to a plotting routine without having to worry about latitude/longitude. You can use
plt.imshow to achieve this, for example:

import matplotlib.pyplot as plt

T = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

plt.imshow(T, interpolation = 'none')
plt.show()

Note that in this case x and y were not specified explicitly. Instead, when using imshow it is
assumed that they are regularly spaced according to the size of the array to be plotted (which
in this case is 3× 3).

Exercises

17. Use imshow to plot a 4× 2 grid of numbers.

18. How can you flip the y-axis so (0, 0) is at the bottom left of the plot?

19. What does interpolation = 'none' mean? Search online to find different inter-
polation options and try one.

49

4.7.3 Colour bars

So far we’ve used both plt.scatter and plt.imshow to make 3D plots with the colour
showing the values of z. However, a casual viewer won’t know which colour refers to which
value. To fix this, we can use a colour bar which shows the correspondence between colours
and z-values. Let’s go ahead and add a colour bar to the scatter plot we made before:

import matplotlib.pyplot as plt

x = [1,2,3,4,5]

y = [4,1,10,2,3]

T = [50 ,40 ,30 ,20 ,10]

plt.scatter(x, y, c = T, s = 200, cmap = 'coolwarm ')
plt.colorbar ()

plt.show()

That’s it! You should see a colour bar to the right of your scatter plot. We simply told python
to add the colour bar with plt.colorbar(). Note that color is spelt without a ‘u’ !

Exercises

20. Add a colour bar to the imshow plot you made above.

21. Add a colour bar to the scatter plot you made in Exercise 16. Find out how to
give the colour bar a suitable title to show what it represents.

4.8 Summary

You should now know about the following things:

• How to import modules

• How to rename modules so that you don’t need to type so much

• How to import just the bits you need from a module

• How to use the matplotlib module to create basic 2D plots with the plot command

• How to label your plots appropriately

• How to make 3D plots using scatter and imshow

Although the plt.plot() function is not very complicated to use, it is one of the most useful
functions in python for a scientist. Once you’re used to using it it’s considerably quicker than
using Excel to draw a graph, and so is invaluable when you’re exploring data. Combined with
reading data from files (which we will cover next session), it is one of the simplest yet most
powerful tools you’ll come across.

50

4.9 Answers to exercises

Answers

1. We’re going to use matplotlib for plotting. You should either find this by searching
on the internet (Googling ‘python plotting module’ works pretty well) or by asking
someone who has experience of python (if you’d asked me, I’d have recommended
matplotlib). Don’t worry if you chose another one — the point is to emphasise
that you should be using the internet to get answers when programming.

2. log10(x) will find the base 10 logarithm, but so will log(x, 10).

3. The math module contains the variable math.pi, representing π.

4. Importing variables and functions works in exactly the same way!

5. This may seem a little pointless — it’s an exercise in copying and pasting — but you
should get used to the fact that often you will be doing just that. If you understood
all of the code, well done!

6. It doesn’t matter what change you made — if your code ran successfully and the
graph looked different to the last exercise you’ve done it right!

7. They all have import matplotlib.pyplot as plt near the start, and they all end
with plt.show().

8. For example:

Import the plotting module

import matplotlib.pyplot as plt

The variables to plot

x = [1,2,3,4,5]

y = [1,4,9,16,25]

Create the plot

plt.plot(x,y)

Display the plot

plt.show()

9. By using help(plt.plot):

• 'k.'

• 'g>-'

• 'yp-.'

51

http://matplotlib.org/

• 'm*:'

10. For example:

Import the plotting module

import matplotlib.pyplot as plt

The variables to plot

x = [1,2,3,4,5]

y = [1,4,9,16,25]

Create the plot with a cyan dashed line , marking each point with

a hexagon

plt.plot(x, y, 'ch --')

Display the plot

plt.show()

11. For example:

Import the plotting module

import matplotlib.pyplot as plt

The variables to plot

x1 = [1,2,3,4,5]

y1 = [1,4,9,16,25]

x2 = [1,2,3,4,5]

y2 = [8,6,4,2,0]

Create the plots

plt.plot(x1 , y1 , 'r', label='x-squared ')
plt.plot(x2 , y2 , 'g', label='10 - 2x')

Display the plot

plt.show()

Although the lines have been labelled, the legend has not appeared.

12. Once you have added the lines to your plot, you need to call the function
plt.legend().

13. For example:

Import the plotting module

import matplotlib.pyplot as plt

The variables to plot

x1 = [1,2,3,4,5]

y1 = [1,4,9,16,25]

52

x2 = [1,2,3,4,5]

y2 = [8,6,4,2,0]

Create the plots

plt.plot(x1 , y1 , 'r', label='x-squared ')
plt.plot(x2 , y2 , 'g', label='10 - 2x')

plt.legend ()

plt.title('Some extremely interesting results ')
plt.xlabel('x')
plt.ylabel('f(x)')

Display the plot

plt.show()

You can then save the figure using the save button on the interactive window.

14. A list of colour maps can be found here. Different colour maps can be used by chang-
ing the word blah inside the cmap = 'blah' argument. Take a look at viridis,
hot and gist earth.

15. For example:

import matplotlib.pyplot as plt

#Cities used are London , New York , Sydney and Johannesburg

x = [0, -74, 151, 28]

y = [51, 40, -33, -26]

T = [19, 25, 13, 11]

plt.scatter(x, y, c = T, s = 200, cmap = 'coolwarm ')
plt.show()

(Note: there are some plotting routines which can deal with latitude/longitude maps
properly, including drawing different map projections and plotting the continents
automatically. That’s beyond the scope of this course but is something you may
want to bear in mind.)

16. For example:

import matplotlib.pyplot as plt

#Cities used are London , New York , Sydney and Johannesburg

x = [0, -74, 151, 28]

y = [51, 40, -33, -26]

T = [19, 25, 13, 11]

#population in multiples of 10000

N = [900, 800, 500, 100]

53

http://matplotlib.org/examples/color/colormaps_reference.html

plt.scatter(x, y, c = T, s = N, cmap = 'coolwarm ')
plt.show()

17. For example:

import matplotlib.pyplot as plt

T = [[1, 2, 3, 4], [5, 6, 7, 8]]

plt.imshow(T, interpolation = 'none')
plt.show()

18. You can move the origin in the call to imshow as follows:

import matplotlib.pyplot as plt

T = [[1, 2, 3, 4], [5, 6, 7, 8]]

plt.imshow(T, interpolation = 'none', origin = 'lower ')
plt.show()

19. interpolation = 'none' draws the plot with sharp boundaries between the edges
of each box. It is possible to use smoother interpolation methods, for example:

import matplotlib.pyplot as plt

T = [[1, 2, 3, 4], [5, 6, 7, 8]]

plt.imshow(T, interpolation = 'gaussian ', origin = 'lower ')
plt.show()

20. For example:

import matplotlib.pyplot as plt

T = [[1, 2, 3, 4], [5, 6, 7, 8]]

plt.imshow(T, interpolation = 'none', origin = 'lower ')
plt.colorbar ()

plt.show()

21. The colour bar can be given a title as follows:

import matplotlib.pyplot as plt

#Cities used are London , New York , Sydney and Johannesburg

x = [0, -74, 151, 28]

y = [51, 40, -33, -26]

T = [19, 25, 13, 11]

#population in multiples of 10000

N = [900, 800, 500, 100]

plt.scatter(x, y, c = T, s = N, cmap = 'coolwarm ')
cb = plt.colorbar ()

cb.set_label("Average July temperature (degrees C)")

plt.show()

54

5 Reading/writing text files and the numpy module

In section 4 we looked at using matplotlib to plot simple graphs of data which we entered
by hand. The ability to create plots is very useful, but it is fairly limited if we have to type
in everything. In this section we’re going to look at reading data from a file so that we can
plot more useful graphs. And since we’re covering reading data from files, we’re also going to
cover writing data to files.

We’re also going to look at the basics of the numpy (numeric python) module; this is a
module which is very widely used in scientific computing, and which you’ll come across often
throughout your degree.

There are many different formats for storing data which you might come across, but we’re
only going to cover two in this course: text files and CSV files (which are just text files with a
pre-defined layout). A lot of simpler meteorological data is supplied in CSV format (including
all of the data from the atmospheric observatory), and it is a very commonly understood data
format.

5.1 Reading from text files

To open a file we will use the python built-in function open. This takes a single argument,
the name of the file to read, and returns a file object. This file object can then be used to
read the data, either all at once or a line at a time.

Create a new script in Spyder, download textfile.txt from blackboard into the same
directory as the script you just created, and run the following code in it:

f = open('textfile.txt')
text = f.readlines ()

f.close()

for line in text:

print line

This opens the text file, reads the entire file into a list of strings (each element of the list
is a single line in the file), and closes the file. We then loop over the list and print each line
to the screen.

You can also use the following method to do the same thing:

f = open('textfile.txt')
for line in f:

print line

f.close()

which loops over the lines of text in the file one at a time. Generally the first method is
preferable, because it means that we have the contents of entire file in memory, and can
access it later in the program. The second method is better if you have a very large file (e.g.
> 100MB) because often we only want to scan through the file once, and don’t want to fill
up the computer’s memory with something we’re not going to use again. Since we won’t be
working with very large files, I’d recommend using the first method throughout this course.

55

However, it’s useful to be aware of the second method for when you come across it in other
people’s code, or when you need to deal with large data files.

5.2 Reading from CSV files

A CSV (comma-separated values) file is a very common way of storing numerical data. It is
just a text file with the suffix ‘.csv’ and the following format:

column1 ,column2 ,column3

1,2,3

4,5,6

7,8,9

10,11,12

...

The first row is a list of text descriptions of what the columns contain, each separated
by a comma. All of the rows after that are values separated by a comma. This format is
understood by Excel, as well as many other data manipulation programs.

We read CSV files in exactly the same way as we read text files. Then by processing each
line of text correctly, we can store the individual columns of data in separate lists. Download
temps jan 2015.csv from Blackboard. First, open in it a text editor to see what each column
contains. You can use Spyder, but you will need to select ‘All files (*)’ before it shows up
in the open dialog. You can also use WordPad or Excel. Once you have done that, try the
following code:

f = open('temps_jan_2015.csv')
text = f.readlines ()

f.close()

days = []

temperatures = []

We want to skip the first line , because it just has the column names

for line in text [1:]:

fields = line.split(',')
days.append(float(fields [0]))

temperatures.append(float(fields [1]))

print days

print temperatures

Note that we have introduced the split() function. If we take a variable which contains
a string (here line) we can call its split() function as above. That will split the string into
a list of other strings. The argument to split() is the character which we should split the
string at. So the above code takes the variable line and splits it at every comma, giving a
list of strings which we’ve named fields. Try adding print fields after the line fields =

line.split(',') in the above code to see what fields contains.

56

Exercises (answers in section 5.5)

1. What is the purpose of the float() command in the above code?

2. Modify the above script so that it plots a graph of days against mean temperatures.
Make sure to add appropriate axis labels and a title.

3. Download min max temps reading 2015.csv from Blackboard. This file contains
minimum and maximum temperature records for every day in 2015. Create a plot
with two lines — the minimum and maximum temperatures in 2015.
Hints:

• Examine the file before you do any coding.

• To represent the dates, you should use the datetime module which you came
across in assignment 3

• You can create the datetimes as you go along — there is no need to store the
years, months and days in separate lists first.

4. Using min max temps reading 2015.csv, create a graph of the difference between
maximum and minimum daily temperatures for 2015.

5.3 Writing to file

Opening a file to write to is a very similar process to opening it to read from. The only
difference is that the open method takes an additional argument, stating that the file should
be able to be written to. If you give the name of a pre-existing file it will be overwritten,
so be careful! Once you have opened the file for writing, you can use the write() function
to add lines of text. Let’s look at an example:

The 'w' argument says that this file can be written to

f = open('output_test.txt', 'w')

f.write('This text is written to the file')
f.write('Now this text is written to the file')
f.write('So is this text. Simple , hmm?')
f.write('But wait ... Is this actually doing what we want?')
f.close()

Try running the above code. You should see the file output test.txt created on your
filesystem, in the same directory as the script. Open it in a text editor and look at the
contents. Are they what you expect? (That’s a rhetorical question — the answer is no!)

Exercises

57

5. If you want to add to a file rather than overwrite it, how can you do that?

6. Find out how you can make each line appear on a new line, and modify the above
program so that it does that.

Note that in all of these examples, we have used the variable f to store the file object.
This is a common convention, but of course you can name it whatever you like. In the case
where you have multiple files open at the same time, you’ll need more than one variable. Give
them sensible names! For example, if we want to copy the contents of one file to another in
python, we could do this:

The file to read from

in_file = open('textfile.txt')

The file to write to

out_file = open('output_textfile.txt', 'w')

for line in in_file:

out_file.write(line)

in_file.close()

out_file.close ()

A few things to note:

• When we read lines from a file, they already contain the newline character at the end

• Here, I have chosen the method of looping over the input file one line at a time and
writing it to the output file.

Exercises

7. Change the above script so that it reads the entire contents of textfile.txt into
a list, closes the input file, and then writes it to the output file.

5.3.1 Writing numbers to file

The write() function takes a string and writes it to a file. That’s all very well, but we’re
going to want to write numbers to file. In python, there are two main ways of converting a
number to a string:

• str(): This function takes a number (i.e. a literal number or a variable containing a
number) and converts it to a string. It’s simple, and will choose what it thinks is a
sensible number of decimal places for you. In most cases, this is the best function to
use.

58

• format(): This function is used for specifying precisely how you want your numbers to
appear (e.g. how many decimal places, padding the number with leading zeroes etc.).
You should be aware of it, but we are not going to use it in this course; str() will be
sufficient for all our needs.

Exercises

8. Download the file temps jan 2016.csv from Blackboard. This is a slightly different
format to temps jan 2015.csv — it contains full dates, and all of the temperatures
are in Kelvin. Write a script to read this file, and write a new file which is in the
same format, and has the same units, as temps jan 2015.csv.

5.4 The numpy module

While python lists are fine for dealing with the sort of data we’ve been using, they can be a
little too slow when dealing with the sort of very large data sets which you often encounter in
environmental science. They also behave rather counterintuitively regarding multiplication
and other mathematical operations. To overcome these things, the numpy module was created.
The primary aim of numpy is to provide fast multidimensional arrays for use in place of python
lists. There are a few important differences between numpy arrays and python lists:

• The size of a numpy array is fixed — you cannot append new elements to it

• All of the items in a numpy array must be the same type (e.g. integers)

• Multiplying a numpy array by a number will multiply every element in the array by that
number

• If you multiply two numpy arrays of the same length together, each pair of elements is
multiplied to give a new array

Apart from those differences, numpy arrays can be use in much the same way as python
lists. You will find that numpy will be used throughout your degree courses in place of python
lists.

There are a few ways to create numpy arrays. The simplest is to create an array from a
python list:

We import numpy and name it np. This is an almost universal convention

import numpy as np

arr = np.array ([1.0 ,2.0 ,3.0 ,4.0])

print arr

print 4 * arr

print arr * arr

59

Exercises

9. There are other ways to create numpy arrays. Find out how to use the following
functions to create arrays:

• np.arange()

• np.zeros()

• np.ones()

• np.linspace()

As well as providing fast arrays, there are a many useful numerical functions available in
the numpy module. There is a useful numpy tutorial here: https://docs.scipy.org/doc/

numpy-1.14.0/user/quickstart.html. Go ahead and work through that tutorial, up to
(not including) the section ‘Less Basic’. Then try the exercises below.

Exercises

10. Write a script which generates a linear range of 500 numbers between −2 and 2
using numpy. Plot the square, and the cube of those numbers on a graph.

11. Create a numpy array, of shape 5×6, which is filled with 1 everywhere. Set all of the
elements in a row of your choice to 3, and all of the elements in a column of your
choice to −1. Choose a 3× 2 block somewhere within the array and set the values
in that block to 2. Print the array. Take the sine of the entire array, multiply the
result by 6, and print it again. Take the transpose of the array and print the result.
‘Flatten’ the array so it has only one dimension and print it again. Finally, print
the minimum, maximum, mean, and standard deviation of the values in the array.

Using python lists to do the tasks in the previous question would either require more
lines of code (e.g. several for loops) or horribly convoluted ‘list comprehensions’. The numpy

approach is easier to write and also to easier understand when revisiting the code at a later
date. More importantly, when dealing with large matrices (e.g. 1000 × 1000), using python
lists would take a very long time to execute. numpy is optimised to deal with this sort of case
and will produce results quickly (try it!).

5.5 Answers to exercises

Answers

60

https://docs.scipy.org/doc/numpy-1.14.0/user/quickstart.html
https://docs.scipy.org/doc/numpy-1.14.0/user/quickstart.html

1. float() is necessary because fields[0] and fields[1] contain text, not numbers.

2. This can be done using matplotlib; see the previous chapter if you need to refresh
your memory.

import matplotlib.pyplot as plt

f = open('temps_jan_2015.csv')
text = f.readlines ()

f.close()

days = []

temperatures = []

We want to skip the first line , because it just has the column

names

for line in text [1:]:

fields = line.split(',')
days.append(float(fields [0]))

temperatures.append(float(fields [1]))

plt.plot(days , temperatures)

plt.xlabel('Date')
plt.ylabel('Mean temperature (C)')
plt.title('Mean Temperatures in January 2015')
plt.show()

3.
import matplotlib.pyplot as plt

from datetime import datetime

f = open('min_max_temps_reading_2015.csv')
text = f.readlines ()

f.close()

dates = []

min_temps = []

max_temps = []

We want to skip the first line , because it just has the column

names

for line in text [1:]:

fields = line.split(',')

year = int(fields [0])

month = int(fields [1])

day = int(fields [2])

date = datetime(year , month , day)

dates.append(date)

min_temps.append(float(fields [3]))

61

max_temps.append(float(fields [4]))

plt.plot(dates , min_temps , label='Minimum temperature (C)')
plt.plot(dates , max_temps , label='Maximum temperature (C)')
plt.legend ()

plt.xlabel('Date')
plt.ylabel('Temperature (C)')
plt.title('Minimum and Maximum Temperatures in 2015')
plt.show()

4.
import matplotlib.pyplot as plt

from datetime import datetime

f = open('min_max_temps_reading_2015.csv')
text = f.readlines ()

f.close()

dates = []

temp_diffs = []

We want to skip the first line , because it just has the column

names

for line in text [1:]:

fields = line.split(',')

year = int(fields [0])

month = int(fields [1])

day = int(fields [2])

date = datetime(year , month , day)

dates.append(date)

temp_diffs.append(float(fields [4]) - float(fields [3]))

plt.plot(dates , temp_diffs)

plt.xlabel('Date')
plt.ylabel('Temperature (C)')
plt.title('Difference between min/max temperatures in 2015')
plt.show()

5. Use open('outputfile.txt', 'a') to append to the file.

6. Add newline characters (\n) to the end of each line:

The 'w' argument says that this file can be written to

f = open('output_test.txt', 'w')

f.write('This text is written to the file\n')
f.write('Now this text is written to the file\n')

62

f.write('So is this text. Simple , hmm?\n')
f.write('But wait ... Is this actually doing what we want?\n')
f.write('Yes , yes it is.\n')
f.close()

7.
The file to read from

in_file = open('textfile.txt')
Read the entire file

lines = in_file.readlines ()

Close the file

in_file.close()

The file to write to

out_file = open('output_textfile.txt', 'w')

Write the contents to the output file

for line in lines:

out_file.write(line)

Close the output file

out_file.close ()

8.
The file to read from

in_file = open('temps_jan_2016.csv')
Read the entire file

lines = in_file.readlines ()

Close the file

in_file.close()

The file to write to

out_file = open('temps_jan_2016_out.csv', 'w')

Write the header

out_file.write('day ,mean_temp\n')

Skip the header line , and write data to output file

for line in lines [1:]:

fields = line.split(',')

We don't need to convert the day to a number

since we're just going to write it straight out

day_str = fields [2]

Read the temperature in Kelvin as a number

temperature_k = float(fields [3])

Now convert it to degrees Celsius

temperature_c = temperature_k - 273.15

Now write out the day and the temperature

63

out_file.write(day_str+','+str(temperature_c)+'\n')

Close the output file

out_file.close ()

9. • np.arange(): This behaves like the range() function in python, but returns
a numpy array instead of a list.

• np.zeros(): This takes either a number or a list of numbers. For a single
number, it creates a 1D array of zeros with the specified number of elements.
For a list of numbers, it creates an nD array (where n is the number of elements
in the list) with the given sizes of dimension. For example np.zeros([3,4])

creates a 3× 4 array of zeros.

• np.ones(): This is exactly like np.zeros(), except it fills the arrays with ones.

• np.linspace(): This takes 3 arguments, start, stop, and num, and creates a
linearly spaced array of num values going from start to stop inclusive.

10.
Import the modules we're going to use

import numpy as np

import matplotlib.pyplot as plt

Create the range of x values

x = np.linspace (-2,2,500)

Because we're using numpy , the square and cube are simple

y1 = x**2

y2 = x**3

Now plot the data and show it

plt.plot(x,y1)

plt.plot(x,y2)

plt.show()

11. For example:

import numpy as np

#Create a 5 * 6 numpy array filled with 1 everywhere

a = np.ones(shape = (5, 6))

#Set all values in a chosen row to 3

a[4, :] = 3

#Set all values in a chosen column to -1

a[:, 0] = -1

64

#Set values within a chosen 3 * 2 block to 2

a[1:4, 2:4] = 2

print a

#Take the sine of the entire array

b = np.sin(a)

#Multiply the array by 6

b = b * 6

print b

#Take the transpose of the array

c = np.transpose(b)

print c

#Flatten the array

d = np.ravel(c)

print d

#Print the minimum , maximum , mean and standard deviation of the

values in the array

print np.min(d)

print np.max(d)

print np.mean(d)

print np.std(d)

65

6 Conclusion

Now that you have completed all of the notes along with the exercises and assignments, please
go back to section 1.4 and make sure that you are comfortable with all of the points listed. If
there are things you are not sure about, go back through the notes, do some exercises again,
talk to the lecturer, the demonstrators, and your classmates. Try some programming of your
own, or find some python code online and see how much of it you can understand.

Next time you’re sat at a computer and you need to perform some calculations, try opening
python instead of the default calculator (or Google). And when you need to generate graphs,
don’t just fire up Excel, load up Python(x,y) and create a script to do it for you.

One of the objectives of this course was to get you familiar with programming in general.
In particular, the concept of breaking down a large task into small steps is a key part of
programming, regardless of the language you are using. If you can do this effectively it will
stand you in good stead when you come across new programming problems in the future.

6.1 Summary

This section contains a summary of the key ideas that have been introduced in the handout.

• The print statement is used to write output to the screen.

• It’s good practice to use float when performing calculations.

• Beware of inadvertent integer division, e.g. 2 / 3 may give an answer of 0.

• Lists are collections of objects such as numbers ([1, 2, 3]) and strings (["a", "b"]).

• for loops (and the range function) are very important for looping over lists, etc.

• while loops are useful for doing actions until a particular condition is satisfied.

• if/elif/else are very useful for making decisions and controlling program flow.

• Functions (def xyz) are essential for longer programs; they enable you to divide the
problem into smaller chunks, which is good programming practice.

• The math, datetime and random modules.

• The matplotlib module, and in particular matplotlib.pyplot (usually imported as
plt); the plotting routines plt.plot(), plt.scatter() and plt.imshow().

• Reading and writing text and CSV files with open, readlines and write.

• numpy: fast and efficient multidimensional array manipulation.

66

7 References

This is a list of useful python/programming references. It collects any links which were in
the text, along with additional resources which you may find helpful. If you come across any
other resources which you find helpful, please email us and let us know — we will try to
include them in the course next year!

• http://docs.python.org/2/tutorial/: The official python tutorial.

• https://docs.python.org/2/library/index.html: Documentation for all of the stan-
dard libraries which come with python, as well as built-in functions.

• http://python-xy.github.io/: Python(x,y) — a good python distribution for Win-
dows.

• http://www.numpy.org/: numpy website. The numerical library for scientific program-
ming in python.

• http://matplotlib.org/: matplotlib website. A top-quality plotting library for
python.

• http://matplotlib.org/gallery.html: The matplotlib gallery. This should be your
first stop when you want to draw a particular graph and you’re not sure how to go about
it.

• https://developers.google.com/blockly/: Blockly, a visual programming website.
Good for getting to grips with some of the simple programming concepts such as vari-
ables and loops.

8 Acknowledgements

Many thanks to Guy Griffiths who wrote the first versions of the notes, and Chris Thomas
for updating them and discussing them with me.

67

http://docs.python.org/2/tutorial/
https://docs.python.org/2/library/index.html
http://python-xy.github.io/
http://www.numpy.org/
http://matplotlib.org/
http://matplotlib.org/gallery.html
https://developers.google.com/blockly/

	Introduction
	What is programming?
	What is python?
	How this course is structured
	What you can expect to know by the end of the course

	First steps and programming basics
	Running python interactively
	Integer division
	Mathematical functions

	Variables
	Lists
	Writing scripts using Spyder
	The print statement
	Finding code errors

	Comments
	Dictionaries
	Summary
	Answers to exercises

	Looping, branching, and functions
	Loops
	Basic for loops
	Indexed for loops
	A worked example: the Fibonacci sequence

	Conditionals and Branching
	The if statement
	else and elif

	Functions
	The while statement
	Summary
	Answers to exercises

	Using external modules and basic plotting
	Finding the module you need
	Importing a module
	Finding functions within a module
	Using functions within a module
	Importing a module, revisited
	Giving a module a shorter name
	Importing some functions from a module
	I'm telling you this so that you know never to do it
	Modules don't just have to contain functions

	The matplotlib plotting module
	Basic 2D plots
	Aside: more on python help
	Labelling your plot

	3D plots
	Plotting with scatter
	Plotting with imshow
	Colour bars

	Summary
	Answers to exercises

	Reading/writing text files and the numpy module
	Reading from text files
	Reading from CSV files
	Writing to file
	Writing numbers to file

	The numpy module
	Answers to exercises

	Conclusion
	Summary

	References
	Acknowledgements

